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Abstract

This paper reviews and investigates
Adam (Kingma & Ba, 2014), an algorithm
for first-order optimization of stochastic objective
functions. Specifically, the Adam and AdaMax
optimization algorithms, three convex and non-
convex classification models, and the dropout
regularizer are implemented for classification of
the MNIST dataset. The performance of these
methods is analyzed through extensive compar-
isons. Using Adam to optimize a convolutional
neural network yielded the highest classification
accuracy on the MNIST test set, 99.21%.

1. Introduction

Stochastic gradient optimization is important in many sci-
ence and engineering fields. In these fields, problems are
commonly framed as minimization or maximization of an
objective function with respect to its scalar parameters. If
the objective function is differentiable with respect to its
parameters, traditional gradient descent is an efficient opti-
mization method. The objective function is often stochastic.
Stochastic objective functions can take the form of a sum
of subfunctions evaluated on different subsamples of data
(minibatches). With a stochastic objective, the efficiency
of optimization can be improved by taking gradient steps
with respect to individual subfunctions, or stochastic gra-
dient descent (SGD). SGD has been instrumental to recent
advances in machine learning (Krizhevsky et al., 2012).
Other sources can contribute noise to the objective, such as
dropout (Hinton et al., 2012). The optimization of stochastic
objective functions with high-dimensional parameter spaces
is challenging.

Adam is an efficient first-order optimization algorithm. It
computes individual adaptive learning rates from estimates
of the first and second moments of the gradients, avoiding
expensive higher order computations. The name Adam is
derived from adaptive moment estimation. Adam is interest-
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ing because it is commonly used today as an alternative to
SGD for training deep neural networks. It is useful because
it handles sparse gradients, is memory efficient, and is well-
suited for non-convex optimization problems. Adam builds
upon RMSProp (Tieleman et al., 2012; Graves, 2013) and
AdaGrad (Duchi et al., 2011).

2. Problem Statement

Adam and AdaMax will be used to optimize three models:
multi-class logistic regression (LR), a multi-layer neural
network (NN), and a convolutional neural network (CNN)

2.1. Quadratically Regularized Multi-Class Logistic
Regression

Algorithms for multi-class logistic regression solve the fol-
lowing optimization problem:
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2.2. Multi-layer Neural Network

The multi-layer neural network architecture that is opti-
mized in experiments has two fully-connected hidden layers
with 1000 hidden units each, and uses the ReLLU activation
function. Neural networks generally solve the following
optimization problem:
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The ReLU activation function has the form a(u) =
max(0, a). £ is the loss function. In this work cross-entropy
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2.3. Convolutional Neural Network

In a convolutional neural network, the formulation is the
same as the multi-layer case, except the weights in at least
one convolutional layer make up kernels that are convolved
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Algorithm 1 Adam. All vector operations are element-wise.

Input: a: Stepsize
Input: e: Machine precision threshold
Input: 51,32 € [0,1): Exponential decay rates for the
moment estimates
Input: f(6): Stochastic objective function with parame-
ters 0
Input: 6): Initial parameter vector
myg < 0 (Initialize 1st moment vector)
vg < 0 (Initialize 2nd moment vector)
t < 0 (Initialize timestep)
while 6; not converged do
t—t+1
gt + Vo fi(6:—1) (Get gradients w.r.t. stochastic ob-
jective at timestep t)
my < Sime—1 + (1 — B1)g: (Update biased first mo-
ment estimate)
vy < Bavi_1 + (1 — B2)g? (Update biased second raw
moment estimate)
my < my/(1 — ) (Compute bias-corrected first mo-
ment estimate)
0y < v /(1— %) (Compute bias-corrected second raw
moment estimate)
0p 0,1 — \/%”;E (Update parameters)
end while
return 6; (Resulting parameters)

over the input.

n

.. T ]
WIIII}'I'I.I)I‘E‘I/Iée)e 2 14 (yi, O aWgos*a(---a(Wyx mz))))

AT W, )12 + MO
3. Algorithms

3.1. Adam

Adam proceeds as shown in Algorithm 1. Exponentially
decaying averages of the gradient (m;) and squared gradient
(v;) are updated with 31 and [, as hyper-parameters that
control the decay rate. These averages are estimates of the
first (mean) and second moments (uncentered variance) of
the gradient. The moving averages are initialized to 0’s,
which can lead to moment averages that are biased towards
zero. This initialization bias is countered by calculating
the bias-corrected estimates 7, and 0, The efficiency of
Algorithm 1 can be improved by replacing the last three
P and 0+ 0y — S

Adam is closely related to RMSProp (Tieleman et al., 2012)
and RMSProp with momentum (Graves, 2013), optimiza-
tion algorithms designed for non-stationary objectives. In

lines with: oy =

Algorithm 2 AdaMax. All vector operations are element-
wise.
Input: a: Stepsize
Input: 51,82 € [0,1): Exponential decay rates for the
moment estimates
Input: f(0): Stochastic objective function with parame-
ters 6
Input: 6): Initial parameter vector
myg < 0 (Initialize 1st moment vector)
ug ¢ 0 (Initialize the exponentially weighted infinity
norm)
t < 0 (Initialize timestep)
while 6; not converged do
t—t+1
gt <+ Vo fi(6:—1) (Get gradients w.r.t. stochastic ob-
jective at timestep t)
my < Bimy—1 + (1 — B1)g: (Update biased first mo-
ment estimate)
uy — max (Baui—1, |g¢|) (Update the exponentially
weighted infinity norm)
Or 01 — ﬁ%’ (Update parameters)
end while
return 6; (Resulting parameters)

RMSProp with momentum the parameters are updated using
momentum on the rescaled gradient. In Adam, the updates
are directly computed using a running average of first and
second moments of the gradient. RMSProp also does not
have a bias correction term, which can lead to divergence in
some cases.

Adam is also related to AdaGrad (Duchi et al., 2011), an
optimization algorithm designed for dealing with sparse
gradients. AdaGrad updates the parameters using 0; 1 =

0; — =% (element-wise division). AdaGrad is a ver-
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sion of Adam with 3; = 0, infinitesimally small 35, and
a different step size, ay = % AdaGrad uses the Ma-

halanobis norm ||| 12 = 07 GM1/26 as the distance
metric instead of || — () ||. Computing (G*))~1/2 is ex-
pensive so a diagonal approximation is used.

3.1.1. WHY DOES ADAM WORK?

There are mathematical problems in the convergence proof
of Adam in the convex case presented in the original
Adam paper. (Reddi et al., 2019) A recent work (Défossez
et al., 2020) provides a correct convergence proof for the
Adam and Adagrad optimization algorithms when applied
to smooth (potentially non-convex) objective functions with
bounded gradients. The authors show that in expectation,
the squared norm of the objective gradient averaged over the
trajectory can be upper bounded in terms of the constants,
optimizer parameters, dimensions d, and total iterations V.
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With the right hyperparameters the bound can be made ar-
bitrarily small and the algorithm is shown to converge at
the same rate as in the original paper, O(dIn(N)/V/'N).
Adam does not converge with the default hyperparame-
ters (Kingma & Ba, 2014), yet still moves away from the
initialization point faster than AdaGrad, explaining its prac-
tical success.

Adam works intuitively because it aims to combine the
advantages of two other extensions of stochastic gradient
descent, AdaGrad and RMSProp. AdaGrad incorporates
a per-parameter learning rate that improves performance
for problems with sparse gradients. RMSProp has adaptive
learning rates and updates them based on estimates of the
mean and variance of the gradients, which is helpful for
online and noisy problems.

3.2. AdaMax

AdaMax is an extension to Adam based on the infinity norm.
In Adam individual weights are updated by scaling their
gradients inversely proportional to a scaled L? norm of
their current and past gradients. Norms for p values greater
than two are generally numerically unstable, except for the
infinity norm. If the update rule based on the L? norm
is generalized to a rule based on the L°° norm, a simple
algorithm is produced, AdaMax. AdaMax does not need
bias-correction. See Algorithm 2 for pseudocode.

3.2.1. WHY DOES ADAMAX WORK?

AdaMax has shown good performance in practice
but does not yet have theoretical convergence guaran-
tees (Chakrabarti & Chopra, 2021). It works intuitively
for the same reasons that AdaMax works, except using an
update rule based on the L> norm.

4. Experiments

The algorithms explained were implemented on differ-
ent machine learning models to evaluate their efficacy in
Python. In all implementations algorithms were trained for
20 epochs, with a decaying step size oy = % and a mini-
batch size of 128. The exponential decay rates and machine
precision threshold hyperparameters were set as follows:
B1 = 0.9,8; = 0.999,¢ = 1078, Similar values were
used in the Adam paper (Kingma & Ba, 2014). The neural
networks were implemented with and without dropout, and
were optimized using both Adam and AdaMax. The reg-
ularization hyperparameter A is set to 0 in all experiments
because it did not make a noticeable difference.
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Figure 1. Multi-class Logistic Regression optimized with Adam
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Figure 2. Multi-layer Neural Network optimized with Adam, with-
out dropout

4.1. Adam

4.1.1. QUADRATICALLY REGULARIZED MULTI-CLASS
LOGISTIC REGRESSION

Algorithm 1 was implemented on L?-regularized multiclass
logistic regression on the MNIST dataset (Deng, 2012). The
implementation solves the logistic regression formulation
in Section 2.1. An accuracy of 92.69% was achieved on the
MNIST test set. See Figure 1.

4.1.2. MULTI-LAYER NEURAL NETWORK

Algorithm 1 was implemented on a multi-layer neural net-
work on the MNIST dataset. The NN uses the ReLLU acti-
vation function. The implementation solves the multi-layer
neural network optimization formulation in Section 2.2. An
accuracy of 98.17% was achieved on the MNIST test set
without dropout. With dropout, 98.43% was achieved. Fig-
ure 2 shows the loss over iterations for the implementation
without dropout.
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Figure 3. Convolutional Neural Net optimized with Adam, without
dropout

4.1.3. CONVOLUTIONAL NEURAL NETWORK

Algorithm 1 was implemented on a convolutional neural net-
work on the MNIST dataset. The CNN has two alternating
stages of a 5 X 5 convolutional layer, a 3 X 3 max pooling
layer with a stride of 2, and a ReLLU layer. Following those
two stages there are two fully-connected layers. The imple-
mentation solves the convolutional neural network optimiza-
tion formulation in Section 2.3. An accuracy of 99.21%
was achieved on the MNIST test set without dropout. With
dropout, 99.21% was achieved. Figure 3 shows the loss
over iterations for the implementation without dropout.

4.2. AdaMax

4.2.1. QUADRATICALLY REGULARIZED MULTI-CLASS
LOGISTIC REGRESSION

Algorithm 2 was implemented on L?-regularized multiclass
logistic regression on the MNIST dataset. The implemen-
tation solves the logistic regression formulation in Section
2.1. An accuracy of 92.38% was achieved on the MNIST
test set. See Figure 4.

4.2.2. MULTI-LAYER NEURAL NETWORK

Algorithm 2 was implemented on a NN for classification
of the MNIST dataset. The neural network architecture
has two fully-connected hidden layers with 1000 hidden
units each. The ReLU activation function was used. The
implementation solves the multi-layer neural network opti-
mization formulation in Section 2.2. An accuracy of 98.33%
was achieved on the MNIST test set without dropout. With
dropout, 98.14% was achieved. Figure 5 shows the loss
over iterations for the implementation without dropout.
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Figure 4. Multi-class Logistic Regression optimized with AdaMax
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Figure 5. Multi-layer Neural Net optimized with AdaMax, without
dropout

4.2.3. CONVOLUTIONAL NEURAL NETWORK

Algorithm 2 was implemented on a CNN for classification of
the MNIST dataset. The CNN has two alternating stages of
a b x 5 convolutional layer, a 3 X 3 max pooling layer with a
stride of 2, and a ReL U layer. Following the two stages there
are two fully-connected layers. The implementation solves
the convolutional neural network optimization formulation
in Section 2.3. An accuracy of 99.09% was achieved on
the MNIST test set without dropout. With dropout, 99.09%
was achieved. Figure 6 shows the loss over iterations for the
implementation without dropout.

4.3. Comparisons

4.3.1. DROPOUT VS. NO DROPOUT IN NN AND CNN
WITH ADAM AND ADAMAX

I investigated the use of dropout because dropout adds
stochastic regularization in order to reduce overfitting. Fig-
ures 7 and 8 show a comparison of the classification perfor-
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Figure 6. Convolutional Neural Net optimized with AdaMax, with-
out dropout
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Figure 7. Dropout (orange) vs. no Dropout (blue) in Multi-layer
Neural Network with Adam

mance of the neural network architectures with and without
dropout, optimized with Adam. Figures 9 and 10 show a
comparison of the classification performance of the neural
network architectures with and without dropout, optimized
with AdaMax.

4.3.2. ADAM VS. ADAMAX IN LOGISTIC REGRESSION,
NN, AND CNN

I also compared the classification performance of Adam and
AdaMax when used to optimize the same models. Figures
11, 12, and 13 show a comparison of Adam and AdaMax
when used to optimize logistic regression, a NN, and a CNN,
respectively.

4.3.3. LOGISTIC REGRESSION VS. NN vs. CNN IN
ADAM AND ADAMAX

I compared Adam and AdaMax’s performance when used to
optimize the three models described for classification of the
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Figure 8. Dropout (orange) vs. no Dropout (blue) in Convolutional
Neural Network with Adam
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Figure 9. Dropout (orange) vs. no Dropout (blue) in Multi-layer
Neural Network with AdaMax

MNIST dataset. Figure 14 shows a comparison of Adam’s
performance across the three models and Figure 15 shows
a comparison of AdaMax’s performance across the three
models.

5. Conclusion

Table 1 summarizes the classifications accuracies of the dif-
ferent objective functions and optimization algorithms on
the MNIST test set. Based on those results, using Adam to
optimize a CNN performed best (with and without dropout
performed equally well). There still remain conclusions to
be derived from the results about dropout, the optimization
algorithm, and the three objective functions. Based on Fig-
ures 7 - 10 dropout seems to generally stabilize training
and provide regularization when used in neural networks.
Based on Figures 11 - 13 Adam generally performs bet-
ter than AdaMax. Based on Figures 14 - 14 neural net-
works evidently capture the nonlinearities in the MNIST
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LR NN with dropout NN without dropout CNN with dropout CNN without dropout
Adam 92.69% 98.43% 98.17% 99.21% 99.21%
AdaMax 92.38% 98.14% 98.33% 99.09% 99.09%
Table 1. Summary of Classification Accuracies on MNIST Test Set
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Figure 10. Dropout (orange) vs. no Dropout (blue) in Convolu-
tional Neural Network with AdaMax

dataset much better than logistic regression. Interestingly,
the CNN performed better than the NN when optimized us-
ing Adam, but the converse relationship was observed when
optimized using AdaMax. One traditionally expects the con-
volutional filters in a CNN to process images better than
a fully-connected NN. This discrepancy can be attributed
to how the second moment estimate in Adam is a worse
approximation of the geometry of the cost function in CNNs
compared to fully-connected NNs (Kingma & Ba, 2014).

At the time the Adam paper was published, the convex con-
vergence proof was not completely correct and a nonconvex
convergence proof did not exist. Since then, other publica-
tions have presented a correct, generic convergence proof
with optimal hyperparameter values. Nadam (Nesterov-
accelerated Adaptive Moment Estimation) (Dozat, 2016)
aims to combine Adam and Nesterov’s accelerated gradient
by modifying Adam’s momentum component. Convergence
proofs of AdaMax and Nadam remain an open questions.

Besides the theoretical proofs, there do not remain many
open questions in the field of gradient-based optimization,
as far as I know. The field is sufficiently developed such
that a machine learning engineer can design a feature rep-
resentation, choose an objective function that models the
data distribution, and then choose an optimization algorithm
depending on certain criteria (convex vs. nonconvex, sparse
vs. dense gradient, etc.). Lastly, the hyperparameter values
should be tuned by training on a training set and bench-
marking performance on a validation set. I certainly expect
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Figure 11. Multi-class Logistic Regression optimized with Adam
(blue) vs. AdaMax (orange)

that there are more open problems for specific applications.
Adam is already used effectively in practice to solve large-
scale, high dimensional machine learning problems.
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